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Relativistic Kshn-Sham formalism and the microscopic 
stress tensor 
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Department of Physics, Technical University, Dresden 8027, German Democratic 
Republic 

Received 3 October 1988, in final form 19 June 1989 

Abstract. After a short review of the Kohn-Sham procedure for a system of relativistic 
charged particles a relativistic extension of the local density approximation is presented. In 
contrast to former proposals, it satisfies the requirement of Lorentz invariance. Within 
this relativistic Kohn-Sham theory the microscopic stress tensor is considered and the 
corresponding complete energy-momentum tensor is constructed. A local expression is 
found in accordance with the assumptions about the energy density. 

1. Introduction 

The ground state of a system of non-relativistic interacting particles in an arbitrary 
external potential obeys the Hohenberg-Kohn theorem (Hohenberg and Kohn 1964) 
according to which all ground-state quantities and in particular the energy are unique 
functionals of the particle density n.  Kohn and Sham (1965) invented a procedure to 
associate effective one-particle states with the ground state of the interacting system. A 
relativistic generalisation of the Hohenberg-Kohn theorem has been given by Rajagopal 
and Callaway (1973). In this case the external potential must be replaced by an external 
4-potential (or corresponding electric and magnetic fields) and instead of density func- 
tionals one has functionals of the 4-current density. The corresponding Kohn-Sham 
scheme has been formulated by Rajagopal (1978) and by Eschrig et a1 (1985). The 
latter authors also proposed a relativistic version of the local density approximation by 
introducing an additional dependence on the magnetisation vector (instead of the current 
density) in the xc energy. A disadvantage of their ansatz, however, is the lack of Lorentz 
invariance. Therefore in 9 3 of this paper we present a modified version of the relativistic 
local approximation ensuring Lorentz invariance. 

Nielsen and Martin (1985) and recently Ziesche et a1 (1988a, b) investigated the 
microscopic stress tensor within the framework of the non-relativistic local density 
approximation and constructed an xc part of the stress tensor which turned out to be 
also a function of the local density. Sections 4 and 5 of this work are devoted to a 
relativistic generalisation of the xc stress tensor based on the local approximation 
introduced in 9 3.  The resulting stress tensor is again a local expression, which can be 
complemented to an energy-momentum tensor showing the correct covariant behaviour 
under Lorentz transformation. 
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2. Relativistic KohnSham formalism 

We start with a short review of the relativistic version of the Kohn-Sham formalism 
previously outlined in Eschrig et aZ(1985). We consider a system of charged particles 
with electromagnetic interaction in an external field described by a 4-potential 

Afxt(r) = (oext/C,Aext)* (2.1) 
According to the relativistic Hohenberg-Kohn theorem (Rajagopal and Callaway 1973) 
the ground-state energy is a unique functional of the current density 

i"4 = ( P C d  i, (4 = (PC, - j )  (2.2) 
where p denotes the charge density and j is the total current density comprising both the 
orbital and spin contributions. In the sense of the Kohn-Sham procedure the ground- 
state energy may be split up into 

E = T +  EH + Exc + d3rp@,,, (2.3) I 
where Tis the kinetic (and rest) energy of effective one-particle states 

The q k  are chosen in such a way that they yield the correct current density 

ip = - le1 c x  @kY' (Q)k*  (2.5) 
k 

The mean fieldA = A,,, + A H  consists of the external and the Hartree fields. The latter 
is the expectation value of the field produced by the particles themselves and its sources 
are given by P .  The term EH in (2.3) represents the energy of this Hartree field 

= 4 1  d 3 r [ p @ ~   AH]. (2.6) 

The quantity Exc comprises all correlation and exchange effects. The last term in (2.3) 
is the energy in the external field. Expression (2.3) may be transformed into 

E = To + Exc + d3rj,(hAfi +ACxt) I 
A variation with respect to the one-particle states 
density jfl yields 

6 E  = 6To  + 6Exc + d3r6j,(Afi + J 
Defining the xc potentials by 

and, consequently, to the current 

ACXJ (2.8) 
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we obtain the following equations for the Kohn-Sham states: 

(2.10) I n a  [ ac (T$+ l e i A  + l e l A X C )  - l e i  @ -  / e / @ X C  +mc2p P ) k  = & k P ) k *  

Let us note that the paper by Eschrig et a1 (1985) contains an erroneous sign in the 
definitions of Axc and Bxc. 

3. Local approximation 

Generalising the usual local density approximation, Eschrig et a1 (1985) proposed the 
following ansatz for the correlation-exchange energy: 

E ~ C P ’ I  = /d3rnsxc(n_ I M I )  (3.1) 

where n and M denote the particle density and the magnetisation vector, respectively. 
Analogously to j the magnetisation M contains spin as well as orbital contributions. An 
unsatisfactory feature of assumption (3.1) is the lack of Lorentz invariance. In fact, n 
andMare components of 4-quantities. Therefore, expression (3.1) for the energy density 
can be valid only in a special reference system, probably in the local rest frame ( j  = 0). 
In order to overcome this problem, we write instead of (3.1) 

Ex, =/d3reXc(j’. Mp’”) = i d3rexc(p , j ,P ,M) .  (3.2) 

The 4-tensor Mi’” consists of the components 

and is connected with the current density by the relatians 
aP a 

ar j P  = a , , M P V  p = - 5  j = - x M + P ,  (3:4) 

The time derivative of the polarisation vector P vanishes for the time-independent 
ground state. 

A variation of Exc now leads to 

In the last line the variations of p andjare expressed by the aid-of (3.4) and an integration 
by parts is carried out. Alternatively we have according to (2.9) 

GExc = 1 d3r6jpAXc = 1 d 3 r  aY6Mp,,AgC 

= - 1 d3r&6MP,,FE = - 1 d3r(6PExc + 6MB.c) (3.6) 

where the field tensor 
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(3.7) 

has been introduced. A comparison between (3.5) and (3.6) yields 

Owing to the definition (3.7), the xc fields have to satisfy the following equations: 

X - -  - 0. - X E x ,  = - - a 3 aexc - 0  dexc -- - aB xc 
dr dr dM dr dr dP (3.9) 

These conditions together with (3.4) completely determine the polarisation P and 
magnetisation M for a given set of Kohn-Sham states ( p k  with corresponding p and j .  
There is no possibility of imposing an additional gauge condition on M as was done by 
Eschrig et a1 (1985). 

From (3.8) one can see that exc has to be a 4-scalar. That means it can only depend 
on invariants constructed from the 4-quantities j p  and MP’”. In analogy with (3.1) we shall 
restrict ourselves to two invariants describing the charge density p o  and magnetisation 
M O  in the local rest frame ( j  = 0). To this end we consider the 4-vectors j p  and 

1 
2c 

g,: =-EPvKAjYMKA = 
(3.10) 

g = j x P + p M  
where .zPvKA is the completely antisymmetric Levi-Civita tensor, and square them: 

(3.11) 
r = - L  zg P g, = h [ ( j x P + p M ) * - ( j M / ~ ) ~ ]  = i p i M i .  

Now, the energy density exc is assumed to depend only on these invariant quantities 

In order to calculate the xc fields, we need the derivatives 
exc = exc(C, 17). (3.12) 

The difference from the xc fields proposed by Eschrig et a1 (1985) is twofold. First the 
density p and magnetisation M in exc are replaced by Lorentz-invariant quantities po 
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and M O  and, secondly, additional terms containing derivatives with respect to P and j 
occur in (3.8). The contributions of P in (3.10) and (3.11) could possibly be of the same 
order of magnitude as those of M .  

4. Microscopic stress tensor 

In recent papers Ziesche et a1 (1988a, b) considered the microscopic stress tensor within 
the non-relativistic local density approximation and found an xc part 

I d E X C  uxc = - n2 - 
d n  

where sXC is the xc energy per particle and I denotes the unit tensor. To treat the 
relativistic case we put 

U =  OKs + O H  + (7XC 

Here, uKS represents the (negative) momentum-flux tensor of the Kohn-Sham states. 
The arrows above the nabla operators indicate the functions on which they act. The 
second part uH is the Maxwell stress tensor of the Hartree field. The xc part uxc is 
unknown. The total stress tensor has to obey the equilibrium condition 

a 0  
- = - f e x t  = - (PEext + j  X Bext). (4.3) dr 

The divergences of uKS and oH can be calculated from the expressions (4.2) by using the 
Kohn-Sham and Maxwell equations 

wherefH andfxc are defined analogously to (4.3) with the Hartree and xc fields, 
respectively. For uxc follows 

Taking into account the definitions (3.7) of Bxc, Exc ,  the relations (3.4) betweenjfl and 
Mp’” and the continuity equation divj  = 0, we may transform the right-hand side of (4.5) 
into a divergence and identify the resulting tensor with the stress tensor oXc. This leads 
to 

aexc aexc a exc 
aP a j  dP a j  oXc = j €3 Axc + I (exc - p - - j- - P 

8 M .  aexc dexc +P@--- 
ap a~ 

+ j 8 - 

Insertion of the special assumption (3.12) for the xc energy gives 

d exc 1 a exc 
a c  c2 aP 

uxc = j @ A X c  + lexc - ~ [251+ - ‘ @ j ]  - ~ [2pI  + g € 3 g ] .  (4.7) 
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Let us emphasise that in accordance with our local approximation for the energy density 
ex, we also find local expressions (4.6) and (4.7) for the corresponding stress tensor. 

5. Energy-momentum tensor 

In a relativistic formulation the stress tensor has to be the spatial part of the energy- 
momentum tensor TP’” 

k ,  1 = 1,2 ,3 .  (5.1) 

(5.2) 

T k l  = -&I 

We may split up the tensor TP’” in the same way as we did for 0 in (4.2): 
T”” = T K  + TK + TYc. 

The four-dimensional generalisations of the stress tensors (4.2) and (4.6) are straight- 
forward and lead to 

C h  
- 2 u ” k ( x ’ ) ? ’ q k ( x ) i  + /e/cA” k u”k?”cpk 

Tk=-2T k x = x ’  

The metric tensor g p “  is defined by 

With the special choice (3.12) TYc becomes 
g g g i k  = o  (i # k ) .  goo = - g l l  = - 22 = - 33 = 1 

The total energy-momentum tensor satisfies the balance equation 

We may check the correctness of our construction by examining the component Too of 
the energy-momentum tensor. This component must represent the energy density. 
After some transformations we find for the xc part of (5.3) 

a,u T”” = f l x t  = ciE,Xt /C> f e d ’  (5 .5)  

TPc = exc - pQXc  + jAxc - 
dr 

The last term is a divergence and, therefore, does not contribute to the energy. The total 
energy may be obtained from (5.3) and (5.6) by using the Kohn-Sham equation (2.10) 

A comparison with (2.3) shows that this is indeed the energy of the ground state assumed 
at the beginning, but without the energy in the external field. This energy, however, 
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may also be included by transforming the right-hand side of (5.5) and subtracting it from 
the left-hand side 

a ( P O  + j p  Qext/C) = 0. 
Thus we find an energy density Too + pQext in complete agreement with ( 2 . 3 ) .  

6. Conclusion 

In this paper we extended the local density approximation to the relativistic case in such 
a way that Lorentz invariance is ensured. Moreover we constructed the corresponding 
stress and energy-momentum tensors. The question of whether the local approximation 
for a system of relativistic electrons is reasonable or not remains open. Also we dis- 
regarded the problem of how to choose the xc part of the energy density. In general it 
can be a function of all invariant combinations of the 4-quantitiesjp and Mp'. It seems 
necessary to take into account at least two of these invariants characterising the charge 
density and magnetisation in the local rest frame. In doing so, we may use expressions 
derived in the literature for the xc energy of spin-polarised systems (MacDonald 1983, 
Bu Xing Xu et a1 1984) where the particle density and the spin density have to be replaced 
by the corresponding invariant quantities po and M u  defined in (3.11). 
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